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I call our world Flatland, not because we call it so, but

to make its nature clearer to you, my happy readers,

who are privileged to live in space.

A Square, Flatland1.

I. BACKGROUND

In 1884, Edwin A. Abbott published an interesting
novella entitled Flatland: A Romance of Many Dimen-

sions. The narrator is a square, who leads the reader
through some of the special features of two dimen-
sions. As the geometric characters in the story come
to learn, dimension matters—a lesson that has become
more and more important for physicists. For many years,
physicists have studied electronic properties of the two-
dimensional (2D) systems that occur in layered semicon-
ductors, whose thickness typically extends from 10 to 100
atomic layers. The system can accurately be described
as 2D only because of its quantum size effects that make
the degrees of freedom for electron motion in the short
direction irrelevant. A few years ago, a research group led
by Andre K. Geim succeeded in isolating and studying
the ultimate flatland—graphene, a one-atom thick sheet
of carbon atoms arranged laterally in a honeycomb lat-
tice2. This flatland is not only the thinnest material in
our universe, but also so charming in its properties that it
had already been the object of theoretical study for more
than half a century before it at last became available for
experimental inspection.
According to the description in the review article3,

graphene is a flat monolayer of carbon atoms tightly
packed into a two-dimensional honeycomb lattice, and
is a basic building block for graphitic materials of all
other dimensionalities. It can be wrapped up into 0D
fullerenes, rolled into 1D nanotubes or stacked into 3D
graphite. Recent researches show that graphene relates
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to a variety of fields, including quantum electrodynam-
ics for massless fermions4,5, the anomalous quantum Hall
effect4, Koshino-Taylor effect6, and even the proximity-
induced superconductivity4,7.
The potential applications of this fantastic material

cover single molecule gas detection, graphene nanorib-
bons, graphene transistors, graphene biodevices, inte-
grated circuits, transparent conducting electrodes and ul-
tracapacitors. You can learn these applications in detail
at http://en.wikipedia.org/wiki/Graphene. Here,
we only mention one of the recent advances concerning
its applications. In February 2010, researchers at IBM
reported that they have been able to create graphene
transistors with an on and off rate of 100 GHz, far
exceeding the rates of previous attempts, and also the
speed of silicon. The graphene transistors made at IBM
were made using extant silicon-manufacturing equip-
ment, meaning that for the first time graphene transistors
are a conceivable—though still fanciful—replacement for
silicon.

II. STRUCTURE

The carbon atoms in graphene are arranged in hexag-
onal structure (see Fig. 1). It can be seen as a triangular
lattice with a basis of two atoms per unit cell. Please pay
attention to the fact that atoms A, B are not equivalent.
The lattice unit vectors can be written as

a1 =

√
3a

2
(
√
3x̂+ ŷ), a2 =

√
3a

2
(
√
3x̂− ŷ), (1)

where a ≃ 1.42Å is the carbon-carbon distance. The
three nearest-neighbor vectors in real space are given by

δ1 = a(1, 0), δ2 =
a

2
(−1,

√
3), δ1 = −a

2
(1,

√
3). (2)

Interestingly, the reciprocal space of graphene is still
a hexagon, which can be obtained by rotating the real
space through 30 degrees. According to the definition of
reciprocal-lattice vectors ai · bj = 2πδij , i, j = 1, 2, it is
easy to get

b1 =
2π

3a
(x̂+

√
3ŷ), b2 =

2π

3a
(x̂−

√
3ŷ). (3)
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FIG. 1. (Color online) Left: lattice structure of graphene, made out of two interpenetrating triangular lattices (a1 and a2 are
the lattice unit vectors, and δi, i = 1, 2, 3 are the nearest-neighbor vectors). Right: the reciprocal space (blue) of graphene is
still a honeycomb lattice and its first Brillouin zone (green) is also a hexagon. The Dirac cones are located at the K and K′

points. These two pictures are generated by Mathematica
r.

The first three Brillouin zones are drawn in Fig. 1 (they
are colored in green, yellow and magenta respectively).
The first Brillouin zone is also a hexagon. Γ, K, K ′

and M are all high-symmetry points, among which of
particular importance are K and K ′, i.e. Dirac points.
Their positions in momentum space are given by

K =

(

2π

3a
,

2π

3
√
3a

)

, K′ =

(

2π

3a
,− 2π

3
√
3a

)

(4)

A similar discussion of the structure of graphene can
be found in another review article4.

III. ELECTRONIC PROPERTIES

A. The Tight Binding Approximation

The tight binding approximation (TBA) neglects in-
teractions between atoms separated by large distances.
Suppose that, for atoms A and B, the wave functions of
their localized orbitals are φA(r −RA) and φB(r −RB)
respectively, where RA and RB are the position vectors.
The the Bloch wave functions of the two kinds of distinct
atoms are

ψα(r) =
1√
N

∑

Rα

eik·Rαφ(r −Rα), α = A or B, (5)

Therefore, the total wave function of the system can be
constructed by

ψ(r) = CAψA(r) + CBψB(r) (6)

As a quantum system, ψ(r) must satisfy the Schrödinger
equation

Hψ(r) = ε(k)ψ(r), (7)

where H is the Hamiltonian operator. Multiply Eq. (7)
by ψ∗

A
(r) and ψ∗

B
(r) respectively and take the integration

over the whole space, then we can obtain

HAACA +HABCB = ε(k)CA + ε(k)CBSAB, (8a)

HBACA +HBBCB = ε(k)CASBA + ε(k)CB , (8b)

where

Hαβ = 〈ψα|H |ψβ〉, Sαβ = 〈ψα|ψβ〉, (9)

and α, β can be either A or B.
Let us calculate the four elements in H :

HAA =
1

N

∑

RA

〈ψ(r −RA)|H |ψ(r −RA)〉

= 〈ψ(r −RA)|H |ψ(r −RA)〉
= ǫ

(10)

Similarly,

HBB = ǫ. (11)

These are somewhat trivial. Since HAB = H†
AB, we only

need to calculate one of them. Still, it doesn’t need many
efforts to arrive at the following

HAB =
1

N

∑

RA

∑

RB

eik·(RB−RA)〈ψ(r −RA)|H |ψ(r −RB)〉

= t
(

eik·δ1 + eik·δ2+eik·δ3 )

= tf(k)

(12)

where

t = 〈ψ(r −RA)|H |ψ(r −RA − δn)〉. (13)
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Because of the symmetry, n = 1, 2, 3 yield the same
value. According to Eq. (2), we have

f(k) = eikxa + 2e−ikxa/2 cos
(

√
3kya

2

)

(14)

Then we turn to the other part in Eqs. (8).

SAB = 〈ψA|ψB〉 = sf(k),

s = 〈ψ(r −RA)|ψ(r −RA − δn)〉, n = 1, 2, 3.
(15)

Now we can rewrite Eqs. (8) as

∣

∣

∣

∣

ǫ− ε(k) tf(k)− ε(k)sf(k)
tf∗(k)− ε(k)sf∗(k) ǫ− ε(k)

∣

∣

∣

∣

= 0, (16)

[

ε(k)− ǫ
]2 −

[

s ε(k)− t
]2
f(k)f∗(k) = 0

Referring to Eq. (2), we can easily obtain

ω(k) = ‖f(k)‖ =

[

3 + 2 cos
(
√
3kya

)

+ 4 cos
(

√
3kya

2

)

cos
(3kxa

2

)

]
1

2

.

(17)

Finally, we come to the widely used expression in the
research of graphene:

ε±(k) =
ǫ± t ω(k)

1± s ω(k)
(18)

B. π and π∗ Band

We will take a much more detailed discussion on the
physical aspects of Eq. (18), where t is the TBA hopping
parameter, s is the overlap parameter, and ǫ is the on-site
energy parameter, often chosen as zero. The parameters
t and ǫ are expressed in electron-volt units (eV), whereas
s is dimensionless. In the expression of ε±(k), the plus
sign corresponds to the π∗ band and the minus sign corre-
sponds to the π band. In fact, each atom in the lattice of
graphene has one s and three p orbitals. The s orbital and
two in-plane p orbitals are tied up in graphene’s strong
covalent bonding and do not contribute to its conductiv-
ity. The remaining p orbital, oriented perpendicular to
the molecular plane, is odd under inversion in the plane
and hybridizes to form π (valence) and π∗ (conduction)
bands2.
To provide a visualized description, we set t = −3 eV,

s = 0.13 and then plot a pseudo-3D energy dispersion
and constant energy contours for the two types of bands
respectively (see Fig. 2). If we only concern about the
band structure around zero energy, we can assume that
s = 0. Then the spectrum is symmetric and can be
written as

ε(k) = ±t ω(k). (19)
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FIG. 2. (Color online) Up: pseudo-3D energy dispersion for
the two π-bands in the first Brillouin zone of a 2D honey-
comb graphene lattice. Middle: constant energy contours
for the π-valence band. Down: same constant energy con-
tours for the π∗-conduction band8. For figures of high quality
and more interactions, we recommend you directly refer to
the demonstration online.

http://demonstrations.wolfram.com/GrapheneBrillouinZoneAndElectronicEnergyDispersion
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Rewriting the momentum k as a sum of K and q, i.e.

k = K + q =

(

2π

3a
+ qx,

2π

3
√
3a

+ qy

)

, (20)

we can assume that q is small and expand ω2(q) to the
leading order in this vector parameter:

‖f(q)‖2 = 3 + 2 cos

[√
3
( 2π

3
√
3a

+ qy

)

a

]

+ 4 cos

[
√
3

2

( 2π

3
√
3a

+ qy

)

a

]

cos

[

3

2

(2π

3a
+ qx

)

a

]

= 3− cos
(
√
3qya

)

+
√
3 sin

(
√
3qya

)

− 2

[

cos
(

√
3qya

2

)

+
√
3 sin

(

√
3qya

2

)

]

cos
(3qxa

2

)

≃ 3−
(

1−
3q2ya

2

2

)

+ 3qya− 2
[(

1−
3q2ya

2

8

)

+
3

2
qya

](

1− 9q2xa
2

8

)

≃ 9

4

(

q2x + q2y

)

a2

(21)

Then we arrive at the following approximation, which
may be regarded as the most striking distinctiveness of
graphene

ε(q) ≈ ±vF~ ‖q‖. (22)

For the band structure close to K ′, just as we expect, it
will yield the same result. In Eq. (22), vF denotes the
Fermi velocity, given by vF = 3ta/2~. Substituting the
values of the constants, we have

vF =
9× 1.602× 10−19 × 1.42× 10−10

2× 1.055× 10−34
= 9.7× 105m/s

For s = 0, it is possible to derive an analytical expres-
sion for the density of states per unit cell, which involves
the first type complete elliptic integral4. Close to the
Dirac points, the density of states per unit cell is given
by (with a degeneracy of 4 included)

ρ(ε) =
4Ac

(2π)2

∫

dl

|∇qω(q)|
=
Ac

π2

2π|q|
vF

=
2Ac|ε|
π~v2F

, (23)

where Ac is the unit cell area of the reciprocal space given
by Ac = 3

√
3a2/2, since the Bravais lattice is a diamond

(see Fig. 1).

IV. 2D DIRAC EQUATION

In this section, we introduce a little knowledge about
the 2D Dirac equation, mainly dealing with the intu-
itive deduction but not its solutions. According to the
Eqs. (10, 11, 12) and the Hermitian property of H , it is
easy to obtain the Dirac-like Hamiltonian

H = ~vF

(

0 qx − iqy
qx + iqy 0

)

= ~vFσ · q, (24)

where σ = (σx, σy) and σx, σy are the Pauli matrices.
However, it should be noted that this kind of expression

of Hamiltonian only holds for k around the Dirac point
K. For the other point K ′, the corresponding expression
is

H = ~vFσ
∗ · q, (25)

where σ∗ = (σx,−σy). Recall the momentum operator
in quantum mechnics

p = −i~∇ (26)

and the relation between the momentum p and q

p = ~ q, (27)

then we can rewrite the classical Shrödinger equation
Hφ(r) = εφ(r) as the famous 2D Dirac equation

− i~vFσ · ∇φ(r) = εφ(r). (28)

Of course, the two-component wave function φ(r) that
appears here only describes the distribution of electrons’
density close to the K point.
Furthermore, let us consider the problem of a uniform

magnetic field B applied perpendicular to the graphene
plane. Replacing −i~∇ in Eq. (28) by −i~∇+ eA/c, we
obtain

vF

[

σ · (−i~∇+ eA/c)
]

φ(r) = εφ(r). (29)

Perhaps it the right time for us to stop here.
In addition, there are still two more points worthy of

special attention with respect to Eq. (22). First, since
most theorists would like to use units such that ~ = 1,
it is often convenient to regard q as the momentum, just
as we have done before. Second, if you are familiar with
the mass-energy relation of photon (i.e. E = pc), you
may have come to the conclusion that the quasiparticles
involved in the theory of graphene is massless, although
it belongs to fermions. The analogy between Eq. (28) and
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the classical Dirac’s equation for electrons also confirms
this declaration. In the following equation

i~
∂

∂t
φ(r) = (−i~cα · ∇+ βmc2)φ(r), (30)

if we set m = 0, then you can see clearly how similar
these two equations are!

V. VIBRATIONAL AND THERMAL PROPERTIES

A. The Phonon Dispersion

In general, there are three methods to derive the
phonon dispersion relation of graphene: the generalized-
gradient approximation (GGA), the local-density
approximation (LDA)9 and the fourth-nearest-neighbor
force-constant model (4NNFC)10. The experimental
results derived from the inelastic X-ray scattering can
be found in Ref. 11. An introduction to such methods is
far beyond our scope. However, it is still worthy of some
efforts to illustrate the main results (see Fig. 3). The
dispersion relation of graphene comprises three acoustic
(A) and three optical (O) modes, which are either
out-of-plane (Z), in-plane longitudinal (L), or transverse
(T). You should pay special attention to the dispersion
relations of LA, TA and ZA near Γ, for certain reasons
appearing in the next subsection.
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FIG. 3. Ab initio phonon dispersion relation of graphene.
Dashed line: LDA calculation. Solid line: GGA calcula-
tion. The circles and asterisks denote the calculations by
other groups. (Figure is taken from Ref. 9.)

B. The Specific Heat

At low temperature, only acoustic modes are excited.
As Ref. 10 points out, in the low-temperature regime
(below 20 K), the specific heat of graphene has a linear

T dependence. The conclusion we can draw from this
is that the low-temperature behavior of graphene cannot
be merely explained by Debye’s theory; otherwise, CV is
proportional to T 2. In the following, we will provide a
brief proof.
In Debye’s theory, it is assumed that atoms’ thermal

vibration takes the form of elastic waves. For 2D system,
when ω < ωD, the following relation holds:

g(ω) dω =
a2

2π

(

1

v2
‖

+
1

v2⊥

)

ω dω, (31)

where g(ω) is the density of vibration modes, v‖ and v⊥
are the velocities of longitudinal and transverse waves
respectively. Then, the specific heat can be calculated
through

CV =
~
2

kBT 2

∫ ωD

0

ω2 exp(~ω/kBT )
[

exp(~ω/kBT )− 1
]2 g(ω) dω

=
k3Ba

2

2π~2

(

1

v2
‖

+
1

v2⊥

)

T 2

∫ xD

0

x3ex

(ex − 1)2
dx

(32)

where x = ~ω/kBT , xD = ~ωD/kBT , kB is the Boltz-
man’s constant. When the temperature is very low, i.e.
~ωD ≫ kBT , xD ≫ 1, we have

∫ xD

0

x3ex

(ex − 1)2
dx ≈

∫ ∞

0

x3ex

(ex − 1)2
dx = 6ζ(3), (33)

where ζ(s) =
∑∞

n=1 n
−s is the Riemann’s zeta-function.

Now, we have proven that

CV =
3k3Ba

2

π~2

(

1

v2
‖

+
1

v2⊥

)

ζ(3)T 2 ∝ T 2 (34)

holds if the 2D system can be described by Debye’s the-
ory. Therefore, we can further conclude that it is the
ZA mode that mainly contributes to graphene’s thermal
behavior at low temperature. Referring to Fig. 3 again,
you can see that the ZA mode shows a quadratic energy
dispersion near Γ while the TA and LA modes present a
linear dispersion.

VI. FURTHER READING

Numerous materials on graphene can be found in
the following subcategory in arXiv: cond-mat. If you
want to look for a much easier and interesting in-
troduction to graphene, you may would like to read
the paper in Scientific American12. Besides, Wikipedia

also provides useful links to the information about
graphene: http://en.wikipedia.org/wiki/Graphene;
and the Wolfram Demonstrations Project has a dozen
of demonstrations concerning the subject of graphene:
http://demonstrations.wolfram.com.

1A copy of this interesting book can be downloaded from the site:
http://www.mat.ufmg.br/gaal/bibliografia/flatland.pdf.

http://arxiv.org
http://en.wikipedia.org/wiki/Graphene
http://demonstrations.wolfram.com
http://www.mat.ufmg.br/gaal/bibliografia/flatland.pdf
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