
Finite-volume effects in the Polyakov-loop extended Nambu-Jona-Lasinio model with
a chiral chemical potential

Zan Pan1,2, Zhu-Fang Cui3, Chao-Hsi Chang1,2,4,∗ and Hong-Shi Zong1,3,5†
1Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190, China

2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Physics, Nanjing University, Nanjing 210093, China

4CCAST (World Laboratory), P.O. Box 8730, Beijing 100190, China and
5Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093, China

(Dated: May 3, 2016)

We investigate the impact of finite-volume effects on the chiral symmetry restoration and the
deconfinement transition of the phase diagram of quantum chromodynamics, using the Polyakov-
loop extended Nambu-Jona-Lasinio model for Nf = 2 quark flavors in presence of a chiral chemical
potential µ5. Numerical results verify that the chiral chemical potential does not change the critical
exponents but significantly shifts the location of critical end point. The ratios µc/µ5c and Tc/T5c

are significantly affected by the system sizes R. When R is large, Tc increases slowly with µ5; when
R is small, Tc decreases first and then increases with µ5. For a fixed µ5, we can also determine
a Rmin such that the critical end point vanishes when R < Rmin, and the whole phase diagram
becomes a crossover, which can provide some hints to the heavy-ion collision experiments aiming at
the search of the possible critical end point.

PACS numbers: 12.38.Aw, 12.38.Mh, 12.39.-x, 25.75.Nq

I. INTRODUCTION

The thermodynamics of strongly interacting matter
under extreme conditions of temperature and density is a
profound and challenging area of overlap between statis-
tical, particle and nuclear physics. A deep understanding
of its phase structure is expected to bring some insights
on many fundamental problems such as hadron structure,
compact stars, and the early universe [1, 2]. Experiments
with heavy-ion collisions such as the BNL Relativistic
Heavy-Ion Collider (RHIC) and the CERN Large Hadron
Collider (LHC) are continuing active investigations on
the strongly interacting matter in the laboratory [3, 4].
It is expected that quantum chromodynamics (QCD)

could lead to a rich phase structure [5]. Lattice simu-
lations from the first principle have revealed that con-
fined quarks will become released to quark-gluon plasma
around the temperature Tc = 154(9)MeV [6, 7]. How-
ever, due to the sign problem, Monte Carlo methods can
only be applied to the states around zero baryon density.
Therefore, effective models which exhibit the features
of color confinement and spontaneous chiral symmetry
breaking are more feasible to be used to study the phase
structure of QCD. Here, we will adopt the Polyakov-loop
extended Nambu-Jona-Lasinio (PNJL) model [8–11].
In the PNJL model, it is found that the chiral symme-

try restoration and deconfinement transition may coin-
cide and they are of the first order [10]. Discontinuities
appear simultaneously in their order parameters, that is
the chiral condensate σ and the Polyakov loop L. A
nontrivial critical end point (CEP) also exists at finite
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temperature T and quark chemical potential µ, which in-
dicates a coincidence of second-order phase transitions.
To characterize the chirality imbalance N5 = NR−NL of
strongly interacting matter, the chiral (or axial) chemi-
cal potential µ5 is introduced to mimic the effect of the
topological charge changing transitions that are naturally
expected by the QCD anomaly relation [12]. This also
leads to a novel idea proposed in [13] to detect the CEP
by simulating QCD with µ5: CEP can be continued to
a critical end point at the µ5-T plane denoted by CEP5,
which is accessible to lattice QCD simulations of grand-
canonical ensembles. If lattice simulations find CEP5,
this should be seen as a signal of the existence of the CEP
in QCD. As we know, physical systems in the same uni-
versality class all share the same critical exponents. To
check the reasonableness of this continuation, we would
like to know what are the impacts on the critical expo-
nents brought by the introducing of a µ5.

For the two-flavor PNJL model, there are unphysical
decays of hadrons to quarks due to the spurious poles in
the quark loop diagrams [14, 15]. Introducing a lower
momentum cutoff to mimic confining effects of strong
interaction helps to address this problem. This is the
starting point of how we incorporate the finite-volume
effects. In experiments with heavy-icon collisions, the
strongly interacting matter formed through the energy
deposition of the colliding particle obviously has a finite
volume. Therefore, it is very important to have a clear
understanding of the finite-volume effects to fully con-
template the thermodynamic phases. In the context of
heavy-ion collisions, the importance of finite-volume ef-
fects in the thermodynamics of strong interaction may be
brought forward with the help of finite size scaling analy-
sis [16, 17]. In the past years, many theoretical studies of
finite-volume effects have been performed on NJL mod-

mailto:Email:zhangzx@itp.ac.cn
mailto:Email:zonghs@nju.edu.cn


2

els [18–20]. However, only recently the studies on the
thermodynamic properties of strongly interacting matter
in a finite volume using the PNJL models have aroused
increasing attention [21–23].
Our paper is organized as follows. First, in Sec. II we

briefly review the PNJL model with a chiral chemical
potential in the mean field approximation. In Sec. III,
numerical results on chiral symmetry restoration and de-
confinement transition are presented for Nf = 2 with the
infinite size. We also verify that the chiral chemical po-
tential does not impact on the value of critical exponents.
By introducing the lower momentum cutoff, we investi-
gate its finite-volume effects in Sec. IV. Finally, in Sec. V
we summarize our results and make some conclusions.

II. THE POLYAKOV-LOOP EXTENDED
NAMBU-JONA-LASINIO MODEL

In this section, we review the PNJL model in the mean
field approximation [9, 11]. The Lagrangian is given by

L = ψ̄(i /D−m)ψ+G
[
(ψ̄ψ)2 + (iψ̄γ5τψ)

2
]
−U(L,L†, T ),

(1)
where ψ = (u, d) represents the quark fields; the number
of flavors is taken as Nf = 2, and the number of colors
is Nc = 3; the two-flavor current quark mass matrix is
m = diag(mu,md), and we shall work in the isospin-
symmetric limit with mu = md; τ corresponds to the
Pauli matrices in flavor space.
The potential term U(L,L†, T ) is the effective potential

expressed in terms of the traced Polyakov loop L and its
conjugate

L =
1

Nc
TrcW, L† =

1

Nc
TrcW

†. (2)

The Polyakov loopW is a matrix in color space explicitly
given by

W = P exp

[
i

∫ β

0

A4(x, τ) dτ

]
, (3)

where β = 1/T is the inverse temperature and A4 = iA0.
In the Polyakov gauge, W can have a diagonal repre-
sentation in color space [8]. The traced Polyakov loop
L is an exact order parameter of spontaneous Z3 sym-
metry breaking in pure gauge theory. Although in full
QCD the presence of dynamical quarks explicitly breaks
the Z3 symmetry, it still seems to be a good indicator of
the deconfinement phase transition. To incorporate the
confinement or deconfinement properties, we have intro-
duced a Polyakov-loop-dependent coupling constant G as

G = g
[
1− α1LL

† − α2(L
3 + L†3)

]
. (4)

For simplicity we will take L = L†. The numerical values
of α1 and α2 can be obtained by a best fit of lattice data
at zero and imaginary chemical potential, which leads to
α1 = α2 = 0.2.

In the PNJL model, the simplest way to treat quark
matter with chirality imbalance N5 = NR −NL is to in-
troduce a chiral chemical potential µ5 conjugated to chi-
ral density n5 [13, 24, 25]. At the Lagrangian level, this
amounts to adding the chiral density operator µ5ψ̄γ

0γ5ψ
to Eq. (1). This procedure is similar to how we study sys-
tems at finite quark number by adding a quark chemical
potential µ that induces a net quark density n.

Making the mean field approximation and performing
the path integral over the quark field, we can obtain the
thermodynamic potential density V at the one-loop level

V = U(L,L†, T ) +Gσ2 −NcNf

∑
s=±1

∫
d3p

(2π)3
ωs

−Nf

∑
s=±1

∫
d3p

(2π)3
T log(F+F−),

(5)

where σ = ⟨ψ̄ψ⟩ is the chiral condensate and relates to
the effective quark mass M as

M = m− 2Gσ. (6)

The index s denotes the helicity projection and

ωs =
√
(|p|s− µ5)2 +M2 (7)

is the pole of the quark propagator. The momentum inte-
gral of ωs corresponds to the vacuum quark fluctuations.
It is divergent and can be regularized by introducing the
momentum cutoff Λ.

The last term in Eq. (5) is responsible for the statistical
properties of the model at low temperature. Therein we
have introduced the functions

F− = 1 + 3Le−β(ωs−µ) + 3L†e−2β(ωs−µ) + e−3β(ωs−µ),

F+ = 1 + 3L†e−β(ωs+µ) + 3Le−2β(ωs+µ) + e−3β(ωs+µ).
(8)

In order to reproduce the pure gluonic lattice data with
Nc = 3, the potential term U is taken as the following
form

U(L,L†, T ) = T 4

{
−1

2
a(T )LL† + b(T ) ln

[
1− 6LL†

+ 4(L3 + L†3)− 3(LL†)2
]}
,

(9)

where the model parameters are given by

a(T ) = a0 + a1

(
T0
T

)
+ a2

(
T0
T

)2

, (10)

b(T ) = b3

(
T0
T

)3

. (11)

The choice of coefficients reads

a0 = 3.51, a1 = −2.47, a2 = 15.2, b3 = −1.75.
(12)
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Other numerical parameters used in our calculation are
also taken as the same as those in [11]

T0 = 190MeV, Λ = 631.5MeV,

m = 5.5MeV, g = 5.498× 10−6 MeV−2.
(13)

III. CHIRAL SYMMETRY RESTORATION
AND DECONFINEMENT TRANSITION

For any given (µ, µ5, T ), we can obtain the correspond-
ing value of σ and L by solving the gap equations

∂V
∂σ

= 0,
∂V
∂L

= 0. (14)

However, this approach is hard to work in practice due
to the difficulty in solving the coupled integral equations
by means of iterative methods. Moreover, the solutions
of these equations do not necessarily yield a global mini-
mum. There are possibilities that they may yield a local
minimum or even a maximum. We need check that the
solutions yield a global minimum when they are inserted
back into (5). For a better approach, we can solve the
problem in the other way: solving Eqs. (14) is equiva-
lent to find the minima of the potential function V. This
reduces to the famous problem of multidimensional min-
imization, where we can use the efficient Nelder-Mead
simplex algorithm.
First, we consider the case of µ5 = 0. As can be

seen from Fig. 1, the discontinuity of the effective mass
M and the Polyakov loop L vanishes simultaneously at
the same point, which determines the CEP as (µc, Tc) =
(172.7, 159.2). Our calculation of the critical temperature
is in good agreement with the result Tc = 154(9)MeV
from lattice QCD [6]. Although there is a long-standing
debate on whether the chiral symmetry restoration and
deconfinement transition have an one-to-one correspon-
dence or not [26], they coincide exactly in our PNJL
model and are both of first-order transitions.
For µ = 0, we can also determine the location of CEP5

as (µ5c, T5c) = (307.6, 166.1), which is plotted in Fig. 2.
It is interesting that the critical temperature is almost
unchanged in the continuation of CP to CEP5. In [13], a
novel idea to locate the CEP has been suggested by using
the relations µc/µ5c. If lattice simulations find CEP5,
this should be seen as a signal of the existence of the
CEP in QCD.
As the linear response of the physical system to some

external field, susceptibilities are widely used to study
the phase transitions of strongly interacting matter [27].
Here, we mainly discuss three kinds of susceptibilities:
the vector susceptibility χv, the axial-vector susceptibil-
ity χav, and the thermal susceptibility χT . They are
defined as follows

χv =
∂σ

∂µ
, χav =

∂σ

∂µ5
, χT =

∂σ

∂T
. (15)

All these susceptibilities are singular at the CEP or CEP5

and are continuous in the crossover region. We can also
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FIG. 1. (color online). 3D plot for the effective mass M
(upper panel) in the µ-T -M space and the Polyakov loop L
(lower panel) in the µ-T -L space near the CEP (µc, Tc) =
(172.7, 159.2), where µ5 = 0.

use this fact to accurately identify the location of CEP
or CEP5.

As we know, a susceptibility in the vicinity of CEP or
CEP5 diverges in the power law with the so-called criti-
cal exponent γ. These exponents are only dependent on
the dimension of space and the order parameter and do
not involve the details of microscopic dynamics. Differ-
ent systems in the same universality class all share the
same critical behavior. For simplicity, we can choose to
calculate the critical exponents in a specific direction de-
noted by →: the path from lower µ or µ5 toward higher
µc or µ5c with the temperature fixed T = Tc. Using the
linear logarithm fit, we obtain

logχ = −γ log |T − Tc|+ const. (16)

The critical exponent of the vector-scalar susceptibility
in the direction → is calculated in Fig. 3.

Similarly, we mark the other directions as ←, ↑, ↓ for
the path from higher µ or µ5 toward µc or µ5c, the path
from lower T toward Tc, and the path from higher T
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FIG. 2. (color online). 3D plot for the effective mass M
(upper panel) in the µ5-T -M space and the Polyakov loop L
(lower panel) in the µ5-T -L space near the CEP5 (µ5c, T5c) =
(307.6, 166.1), where µ = 0.
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FIG. 3. Linear fit of the logarithm of the vector-scalar suscep-
tibility χv as a function of log |µ−µc| at the fixed temperature
Tc in the direction →, where µ5 = 0. The critical exponent
γv is calculated from the slope as 0.665± 0.030.

toward Tc respectively. In Table I, we calculate the crit-
ical exponents of χv and χT in these four directions for
µ5 = 0; in Table II, we calculate the critical exponents of
χav and χT for µ = 0. They all agree with the mean field
predictions about the universality [28, 29]. In [30], more
critical exponents are calculated for the NJL model.

As what the Svetitsky-Yaffe conjecture states [31], the
critical behavior of a pure SU(3) gauge theory at decon-
finement is in the same universality class as the order-
disorder transition in the corresponding Z3 spin theory
(the so-called three-state Potts model) of the same spa-
tial dimension. Whereas the Pisarski-Wilczek conjecture
predicts the chiral symmetry restoration in QCD with
two species of massless quarks to be in the universality
class of an O(4) symmetric spin model [32]. However, in
our PNJL model these two transitions coincide exactly
and thus have the same exponents.

For µ5 ̸= 0 and µ ̸= 0, CEP will naturally evolve into
CEP5. The discontinuity of the effective mass and the
Polyakov loop always vanishes at the same CEP, and the
chiral symmetry restoration and the deconfinement tran-
sition coincide exactly. The projection of the evolution
of CEP on the µ-µ5 plane is illustrated in Fig. 4, which is
also in good agreement with the results in [13]. Further-
more, we verify that the nonzero chiral chemical potential
does not change the critical exponents, and that γv, γav
and γT are all approximately equal to 2/3. This implies
that our continuation of the CEP of the QCD phase di-
agram to a fictitious CEP belonging to a phase diagram
in the µ5-T plane is reasonable.

TABLE I. Critical exponents for µ5 = 0, where the CEP is
calculated as (µc, Tc) = (172.7, 159.2).

Critical exponent Path Numerical result MF exponent

γv

→ 0.665± 0.030

2

3

← 0.636± 0.059

↑ 0.679± 0.061

↓ 0.659± 0.085

γT

→ 0.658± 0.014

2

3

← 0.664± 0.010

↑ 0.671± 0.012

↓ 0.664± 0.017

IV. FINITE-VOLUME EFFECTS

Since the strongly interacting matter formed through
the energy deposition of colliding particles obviously has
a finite volume, it is very important to have a clear under-
standing of the finite-volume effects to fully contemplate
the thermodynamic phases that may be created in the
experiments. In Refs. [23, 33], the variations of suscepti-
bilities with temperature for different system sizes have
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TABLE II. Critical exponents for µ = 0, where the CEP5 is
calculated as (µ5c, T5c) = (307.6, 166.1).

Critical exponent Path Numerical result MF exponent

γav

→ 0.697± 0.068

2

3

← 0.717± 0.082

↑ 0.694± 0.155

↓ 0.690± 0.172

γT

→ 0.668± 0.042

2

3

← 0.728± 0.061

↑ 0.684± 0.013

↓ 0.671± 0.016

been discussed. In this section, we only focus on the
finite-volume effects regarding the CEP and CEP5.
To incorporate the finite-volume effects, we use a lower

momentum cutoff λ = π/R, where R is the system size
of a cubic volume V = R3. Then we rewrite the thermo-
dynamic potential density (5) as

V = U(L,L†, T ) +Gσ2 −NcNf

∑
s=±1

∫ Λ

λ

d3p

(2π)3
ωs

−Nf

∑
s=±1

∫ ∞

λ

d3p

(2π)3
T log(F+F−).

(17)

Here, we have taken up several simplifications. The infi-
nite sum is considered as an integration over a continuous
variation of momentum with the lower cutoff. We also ne-
glect the surface and curvature effects, and do not modify
any other mean field parameters of the PNJL model. The
same way in discussing finite-volume effects can be found
in [22, 23]. Other methods include the Monte Carlo sim-
ulation [21] and the renormalization group approach [34].
When λ = 0, Eq. (17) reduces to the case of the infinite
volume corresponding to R =∞.
Following the same procedure in the previous section,

we can locate the CEP or CEP5 and calculate the critical
exponents for different system sizes. It has been verified
that the system size R does not affect the critical expo-
nents. In Fig. 4, we plot the projection of the evolution
of CEP to CEP5 on the µ-µ5 plane for different system
sizes: R =∞, 4 fm, and 3 fm. As can be seen clearly, the
finite-volume effects become more and more manifest as
R decreases and are more important for lower µ5. We also
found that the CEP vanishes at a Rmin, whose value is
estimated to be 2.1 fm. When R < Rmin, the whole phase
diagram becomes a crossover. Our numerical results in
Table III also show that the ratios µc/µ5c and Tc/T5c are
significantly affected by different system sizes. If we use
the idea proposed in [13] to locate CEP, the finite-volume
effects on these ratios should be considered.
In Fig. 5, we plot the projection of the evolution of

CEP on the µ5-T plane for different system sizes. We

can see that the relations between Tc and µ5 are intrigu-
ing: when R is large, Tc increases slowly with µ5; when
R is small, Tc decreases first and then increases with µ5.
For large volumes, our results are qualitatively consistent
with the results obtained within the framework of Dyson-
Schwinger equations [35] and the lattice simulation [36].
However, we should point out that other studies using
different models or methods [24, 25, 37, 38] have given
opposite results: Tc decreases with µ5. In our calcula-
tions, the dependence of Tc on µ5 has been significantly
changed by the system sizes, which can be seen as an
indicator of the importance of studies on finite-volume
effects in effective models.
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FIG. 4. (color online). Projection of the evolution of CEP on
the µ-µ5 plane for different system sizes: R = ∞, 4 fm, and
3 fm.
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FIG. 5. (color online). Projection of the evolution of CEP on
the µ5-T plane for different system sizes: R = ∞, 4 fm, and
3 fm.

Another point of interest is to study the shift of CEP
with respect to the system size on the phase diagram. In
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TABLE III. Numerical relations between CEP and CEP5 for
different system sizes.

R (µc, Tc) (µ5c, T5c) (µc/µ5c, Tc/T5c)

∞ (172.7, 159.2) (307.6, 166.1) (0.561, 0.958)

5 fm (194.5, 153.6) (314.9, 164.7) (0.618, 0.933)

4 fm (234.6, 142.2) (321.6, 163.4) (0.729, 0.870)

3 fm (326.0, 84.2) (339.0, 159.8) (0.962, 0.527)

Fig. 6, we plot the projection of the evolution of CEP on
the µ-T plane for fixed chiral chemical potential: µ5 = 0,
100MeV, and 200MeV, varying in the system sizes from
R = ∞ with the highest critical temperature to Rmin

with the lowest critical temperature. The corresponding
values of Rmin are estimated around 2.1 fm, 2.0 fm, and
1.6 fm respectively. It is interesting to note that the re-
lation between critical temperature and the system size
may be nonmonotonic for some values of the chiral chem-
ical potential such as µ5 = 200MeV.
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FIG. 6. (color online). Projection of the evolution of CEP
on the µ-T plane for fixed chiral chemical potential: µ5 =
0, 100MeV, and 200MeV, varying in the system sizes from
R =∞ with the highest critical temperature to Rmin with the
lowest critical temperature. The corresponding values of Rmin

are estimated around 2.1 fm, 2.0 fm, and 1.6 fm respectively.

Our results on the finite-volume effects may have sig-
nificant implications for heavy-icon collision experiments.
As we know, these effects depend on the size of the collid-
ing nuclei, the center of mass energy

√
s, and the central-

ity of collisions. In our PNJL model,
√
s relates to the

temperature T and the centrality of collisions is char-
acterized by the chiral chemical potential µ5. It is ex-
pected that our results can provide some hints to the
experiments aiming at the search of the possible criti-

cal end point. Although there have been many efforts
to estimate the system size [39–42], no general consensus
have been reached. In [43], the system volume for Pb-Pb
collisions with

√
s in the range of 62.4 to 2760GeV has

been estimated to vary from 50 to 250 fm3, correspond-
ing to a system size from 3 to 6 fm. Given that these are
the volumes at the time of freeze out, one may expect
an even smaller system size at the initial equilibration
time [41, 42]. Since the PNJL model also adopts several
approximations, there may exist some uncertainties on
our numerical results.

V. SUMMARY AND CONCLUSION

To summarize, we have discussed the chiral symmetry
restoration and the deconfinement transition of the phase
diagram of QCD using the PNJL model. To consider the
impacts of chirality imbalance N5 = NR − NL, a chiral
chemical potential µ5 is introduced. The discontinuity of
the effective mass and the Polyakov loop always vanishes
at the same CEP, and the two transitions coincide ex-
actly. Three kinds of susceptibilities are defined and the
corresponding critical exponents are calculated. All the
critical exponents are approximately equal to 2/3. We
also verify that the chiral chemical potential does not
change the critical exponents. This implies that our con-
tinuation of the CEP of the QCD phase diagram to a
fictitious CEP belonging to a phase diagram in the µ5-T
plane is reasonable.

By introducing a lower momentum cutoff in the in-
tegration, we investigate the finite-volume effects in our
PNJL model. The finite-volume effects become more and
more manifest as R decreases and are more important for
lower µ5. Numerical results show that the ratios µc/µ5c

and Tc/T5c are significantly affected by the system sizes
R. When R is large, Tc increases slowly with µ5; when
R is small, Tc decreases first and then increases with µ5.
For a fixed µ5, we can also determine a Rmin such that
the CEP vanishes when R < Rmin, and the whole phase
diagram becomes a crossover. The corresponding values
of Rmin for µ5 = 0, 100MeV, and 200MeV are estimated
around 2.1 fm, 2.0 fm, and 1.6 fm respectively.
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